Formula Sheet

| Function | Derivative | | šŸ’” Pro Tip: This formula sheet is provided for reference - understanding how to use these formulas is more important than memorizing them! ...

Formula Sheet

Note: This comprehensive formula sheet covers all major topics in AP Calculus BC.

šŸ“š Table of Contents

  1. [Limits & Continuity]
  2. [Derivatives]
  3. [Integration]
  4. [Series]
  5. [Parametric/Polar]
  6. [Differential Equations]

Limits & Continuity šŸ“Š

Special Limits

  • lim⁔x→0sin⁔xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
  • lim⁔x→01āˆ’cos⁔xx=0\lim_{x \to 0} \frac{1-\cos x}{x} = 0
  • lim⁔xā†’āˆž(1+1x)x=e\lim_{x \to \infty} (1 + \frac{1}{x})^x = e

Derivatives šŸ“ˆ

Basic Rules

  • Power Rule: ddx[xn]=nxnāˆ’1\frac{d}{dx}[x^n] = nx^{n-1}
  • Product Rule: ddx[f(x)g(x)]=f′(x)g(x)+f(x)g′(x)\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
  • Quotient Rule: ddx[f(x)g(x)]=f′(x)g(x)āˆ’f(x)g′(x)[g(x)]2\frac{d}{dx}[\frac{f(x)}{g(x)}] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
  • Chain Rule: ddx[f(g(x))]=f′(g(x))g′(x)\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)

Common Derivatives

FunctionDerivative
sin⁔x\sin xcos⁔x\cos x
cos⁔x\cos xāˆ’sin⁔x-\sin x
tan⁔x\tan xsec⁔2x\sec^2 x
exe^xexe^x
ln⁔x\ln x1x\frac{1}{x}
axa^xaxln⁔aa^x \ln a

Integration šŸ”„

Basic Integrals

  • ∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, nā‰ āˆ’1n \neq -1
  • ∫1xdx=ln⁔∣x∣+C\int \frac{1}{x} dx = \ln|x| + C
  • ∫exdx=ex+C\int e^x dx = e^x + C
  • ∫sin⁔xdx=āˆ’cos⁔x+C\int \sin x dx = -\cos x + C
  • ∫cos⁔xdx=sin⁔x+C\int \cos x dx = \sin x + C

Integration Techniques

  1. U-Substitution

    • ∫f(g(x))g′(x)dx=∫f(u)du\int f(g(x))g'(x)dx = \int f(u)du
  2. Integration by Parts

    • ∫u dv=uvāˆ’āˆ«v du\int u\,dv = uv - \int v\,du
  3. Partial Fractions

    • Decompose rational functions

Series šŸ“Š

Convergence Tests

  1. Ratio Test

    • lim⁔nā†’āˆžāˆ£an+1an∣\lim_{n \to \infty}|\frac{a_{n+1}}{a_n}|
    • < 1: Converges
    • 1: Diverges

    • = 1: Inconclusive
  2. Root Test

    • lim⁔nā†’āˆžāˆ£an∣n\lim_{n \to \infty}\sqrt[n]{|a_n|}
  3. p-Series

    • āˆ‘1np\sum \frac{1}{n^p} converges if p > 1

Taylor Series

f(x)=āˆ‘n=0āˆžf(n)(a)n!(xāˆ’a)nf(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n

Common Series

  1. ex=āˆ‘n=0āˆžxnn!e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
  2. sin⁔x=āˆ‘n=0āˆž(āˆ’1)nx2n+1(2n+1)!\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}
  3. cos⁔x=āˆ‘n=0āˆž(āˆ’1)nx2n(2n)!\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
  4. 11āˆ’x=āˆ‘n=0āˆžxn\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, |x| < 1

Parametric/Polar šŸŽÆ

Parametric Derivatives

dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

Polar Formulas

  • x = r cos Īø
  • y = r sin Īø
  • r2=x2+y2r^2 = x^2 + y^2
  • Area: A=12∫αβr2dĪøA = \frac{1}{2}\int_α^β r^2 dĪø
  • Arc Length: L=∫αβr2+(drdĪø)2dĪøL = \int_α^β \sqrt{r^2 + (\frac{dr}{dĪø})^2}dĪø

Differential Equations ⚔

First Order

  1. Separable

    • dydx=f(x)g(y)\frac{dy}{dx} = f(x)g(y)
    • Separate and integrate
  2. Linear

    • dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)
    • Use integrating factor

Common Forms

  1. Growth/Decay

    • dydt=ky\frac{dy}{dt} = ky
    • Solution: y=Cekty = Ce^{kt}
  2. Logistic

    • dydt=ky(1āˆ’yM)\frac{dy}{dt} = ky(1-\frac{y}{M})
    • Solution: y=M1+Ceāˆ’kty = \frac{M}{1 + Ce^{-kt}}

Euler's Method

yn+1=yn+f(xn,yn)Δxy_{n+1} = y_n + f(x_n,y_n)\Delta x

šŸ“Š Important Constants

Trigonometric Values

Anglesincostan
0°010
30°1/2√3/21/√3
45°1/√21/√21
60°√3/21/2√3
90°10undef

Other Constants

  • e ā‰ˆ 2.71828
  • Ļ€ ā‰ˆ 3.14159
  • ln(e) = 1
  • e^(ln x) = x

šŸ’” Pro Tip: This formula sheet is provided for reference - understanding how to use these formulas is more important than memorizing them!

Ā© 2025 All rights reservedBuilt with Flowershow Cloud

Built with LogoFlowershow Cloud