深度优先搜索和广度优先搜索
广度优先搜索
基于图的广度优先搜索
BFS 通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
- 将遍历起始顶点
startVet
加入队列,并开启循环。 - 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
- 循环步骤 2. ,直到所有顶点被访问完毕后结束。
为了防止重复遍历顶点,我们需要借助一个哈希集合
visited
来记录哪些节点已被访问。
/*广度优先遍历*/
//使用邻接表来表示图,以便获取指定顶点相邻的顶点
vector<Vertex *> graphBFS(GraphAdjustList & graph, Vertex *startVet){
//顶点遍历序列
vector<Vertex *> res;
// 哈希集合,用于记录已被访问过的顶点
unordered_set<Vertex *> visited = {startVet};
// 队列用于实现 BFS
queue<Vertex *> que;
que.push(startVet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (!que.empty()) {
Vertex *vet = que.front();
que.pop(); // 队首顶点出队
res.push_back(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (auto adjVet : graph.adjList[vet]) {
if (visited.count(adjVet))
continue; // 跳过已被访问的顶点
que.push(adjVet); // 只入队未访问的顶点
visited.emplace(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
可视化理解 广度优先搜索